

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Carbon-13 NMR of Some New Substituted 2-Amino Benzotheazoles

Salman R. Salman^a; George Y. Sarkis^b

^a Chemistry Department, Faculty of Science, University of Yarmouk, Irbid, Jordan ^b Chemistry Department, College of Science, Al-Mustansirya University, Baghdad, Iraq

To cite this Article Salman, Salman R. and Sarkis, George Y.(1996) 'Carbon-13 NMR of Some New Substituted 2-Amino Benzotheazoles', *Spectroscopy Letters*, 29: 8, 1573 — 1577

To link to this Article: DOI: 10.1080/00387019608007148

URL: <http://dx.doi.org/10.1080/00387019608007148>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

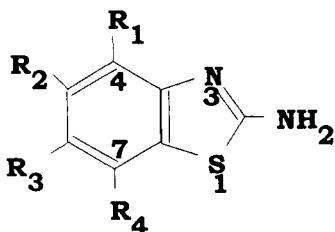
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Carbon-13 NMR OF SOME NEW SUBSTITUTED 2- AMINO BENZOTHEAZOLES .

Salman R. Salman *, Chemistry Department , Faculty of Science,
University of Yarmouk , Irbid , Jordan and George Y. Sarkis, Chemistry
Department, College of Science, Al-Mustansirya University, Baghdad,
Iraq

ABSTRACT :


The carbon -13 chemical shift of nine new substituted 2- amino benzothiazole is presented . The calculated chemical shift, using substituent parameters, agrees with the observed one .

INTRODUCTION :

Interest in polysubstituted 2- amino benzothiazoles as potential biologically active compounds have continued because this class of compounds have demonstrated activity as antimalarials, antituberculars, and inflammatory, antimicrobial and anti parasitic (1-8) . A large number of 2-amino thiozole pyridines and 2- amino thiozolequinolines have been synthesized for biological activity work (9) . The IR and ^1H NMR spectra of these compounds have

* Author for correspondence

1,R1=R2=R3=R4=H ; **2**,R1=R2=R4=H ,R3=F
3,R1=R2=R4=H,R3=Cl ; **4**,R1=R2=R4=H,R3=OCH3
5 ,R1=R2=R4=H,R3=OC2H5 ; **6** , R1=R2=R4=H ,R3=N
7,R1=CH3,R2=R4=H,R3=Cl ; **8** , R1=R3=Cl ,R2=R4=H
9,R2=R3=CH3 ,R1=R4=H

[Scheme 1]

shown that they show tautomeric equilibrium . It was though interesting to determine the C-13 NMR chemical shift for those compounds (Scheme 1) and compare it with the calculated chemical shift .

EXPERIMENTAL :

Synthesis of 2-amino benzothiazole : Bromine (5 mmole) in glacial acetic acid (15 ml) was added slowly during 1.5 hr to a mixture of the amino (p-substituted aniline) (5.9 mmole) and ammonium thiocyanat (12 mmole) in glacial a acetic acid (30 ml) . The reaction mixture was diluted with water and basefied with solid NaOH. The benzothanzole derivative which precipitated was filtered and re crystallized from ethanol . Carbon-13 spectra : The samples were prepared in 5 mm NMR tubes in DMSO- d6 (15-20 % w/v) which was used as a reference . The Carbon -13 NMR spectra were recorded at ambient temperature on a Varian FT80A NMR spectrometer operating at 20MHz . All spectra were width , 45 flip angle , 1s acquisition times 3.5 s delay time .

Table 1 . Experimental and calculated Carbon-13 NMR for substituted 2-Amino-benzothiazole .

Shift	Compound Number								
	1	2	3	4	5	6	7	8	9
δ_1 ,exp	152.89	149.59	151.84	146.95	146.85	158.77	150.69	148.91	152.30
δ_1 ,cal	----	148.39	151.00	146.85	145.85	158.69	151.70	151.40	151.29
δ_2 ,exp	131.26	132.81	132.73	132.20	132.02	131.81	131.89	133.87	130.87
δ_2 ,cal	----	132.66	132.56	132.02	132.36	132.11	132.46	133.86	129.26
δ_3 ,exp	125.84	112.94	124.72	113.39	113.56	122.17	124.45	122.29	127.79
δ_3 ,cal	----	113.00	126.28	113.56	111.44	121.04	123.40	124.38	127.84
δ_4 ,exp	121.24	157.39	125.71	154.78	153.66	141.09	126.18	126.09	122.79
δ_4 ,cal	----	156.04	127.64	153.66	152.64	141.24	127.54	128.94	122.54
δ_5 ,exp	121.24	107.96	120.65	105.93	106.37	117.02	118.05	120.36	130.15
δ_5 ,cal	-----	108.34	121.64	106.37	106.84	116.44	122.34	122.04	128.14
δ_6 ,exp	118.10	118.34	118.73	118.56	118.21	117.78	128.66	125.56	117.62
δ_6 ,cal	----	119.50	119.40	118.21	119.20	119.00	128.30	125.60	118.40
δ_7 ,exp	167.25	166.65*	167.34	165.32	164.91	172.00	166.56	168.99	167.79

* $^1J_{CF} = 236.4$ Hz , $^2J_{CCF} = 27.12$ Hz , $^3J_{CCCF} = 10.54$ Hz

RESULTS AND DISCUSSION :

The Carbon -13 chemical shift of the nine compounds are shown in table 1 . Proton coupled and decoupled carbon-13 spectra were recorded . Calculated chemical shift were based on the additivity rule (10) and substituent induce shifts (11,12) . Table 1 indicates that , in general , there is a small difference between the calculated and the observed chemical shift . Table 1 give the difference between the calculated and observed chemical shift between the substituted and the unsubstituted C-13 chemical shift for different positions ($\Delta\delta$) .

Table 2 , Substitution effect on the carbon -13 chemical shift ($\Delta\delta$) (ppm) of compound 2-9 .

Copd No	$\Delta\delta 1$	$\Delta\delta 2$	$\Delta\delta 3$	$\Delta\delta 4$	$\Delta\delta 5$	$\Delta\delta 6$	$\Delta\delta 7$
2	-3.3	1.5	-12.9	36.2	-13.2	0.2	-0.6
3	-1.1	1.4	-1.1	4.5	-0.5	0.6	0.0
4	-5.9	0.9	-12.4	33.6	-15.3	0.5	2.0
5	-6.0	0.7	-12.2	32.5	-14.5	0.1	-2.4
6	5.9	0.5	-3.6	19.9	-4.2	-0.3	4.7
7	-2.2	0.6	-1.3	5.0	-3.1	10.6	-0.7
8	-4.0	2.6	-3.5	4.9	-0.8	7.5	1.7
9	-0.6	-0.4	2.0	1.6	9.0	-0.5	0.5

$$\Delta\delta = \delta(\text{substituted}) - \delta(\text{Unsubstituted}) \quad [1]$$

It is interesting to observe that $\Delta\delta$ for electron donating groups (ie , OCH₃ , OC₂H₅) cause carbon - 1 and carbon - 7 to shift to high field relative to their values in unsubstituted compound , while electron withdrawing group like nitro cause a low field shift to those carbons , relative to their values in compound 1 . It is also interesting to note that the substitution effect has a larger effect on carbon - 2 and 5 . This may be explained on the bases that tautomerism might effect the charge destiny on the sulfur atom more than on the nitrogen atom , and therefore position ipso and para to the sulfur atom are more affected by substitution than carbon - 3 and 6 .

References :

- 1) I.L.Knunyanant and G.VBenevolenskya ; J.Gen.Chem (USSR) , 1 , 247 (1938) , Chem.Abs , 32 , 2119 (1938) .
- 2) H.Fox and M.Bogent ; J.Am.Chem.Soc , 61 , 2013 (1939) .

- 3) M.L.Mercury , S.M.Vincen and M.L.Sherril ; J.Am.Chem.Soc , 68 , 1594 (1946) .
- 4) A.Burger and S.N.Sawhney ; J.Med.Chem , 11 , 270 (1968) .
- 5) F.Y.Wiselogole , " A Survey of Antimalarial Drugs " , J.W.Edwards ; Ann Arbor , Mich , 1946 , P1911 .
- 6) B.G.Khadse , M.R.Patel and S.R.Lokhard ; Bull.Haffkine.Inst , 7(2) , 12 (1979) .
- 7) S.N.Sawhney , S.K.Arora , J.V.Singh , O.P.Bansal and S.P.Singh ; Indian.J.Chem , SecB , 16B(7) , 605 (1978) . Chem.Abst ; 90 , 22879d (1979) .
- 8) N.Suzuki , T.Yoshiaki and D.Renzo ; Chem.Pharm.Bull , 27 , 1 (1979) .
- 9) G.Y.Sarkis and E.D.Faisal ; J.Heterocyclic.Chem , 22 , 725 (1985)
- 10) J.B.Stothers " Carbon-13 NMR Spectroscopy " Academic Press , New York, 1972 , P 287 and 427 .
- 11) G.C.Levy , R.L.Lichter and G.L.Nelson " Carbon-13 NMR Spectroscopy " 2nd Ed , John Wiley & Sons , New York , 1980 , P 142 .
- 12) D.E.Ewing ; Org.Mag.reson , 12 , 499 (1979) .

Received: May 3, 1996
Accepted: June 19, 1996